
IEEE SYSTEMS JOURNAL 1

AMOPE: Performance Analysis of OpenFlow
Systems in Software-Defined Networks

Ayan Mondal, Student Member, IEEE, Sudip Misra, Senior Member, IEEE, and Ilora Maity, Student Member, IEEE

Abstract—In this paper, we address the problem of defining
probabilistic bounds of packet flow through an OpenFlow switch
in software-defined networks (SDNs). The problem is challenging,
as OpenFlow is one of the popular southbound application pro-
gramming interfaces, which enables controller-switch interaction.
The related existing literature addresses the different aspects of
OpenFlow and SDN-controller interactions. However, there is a
need to analyze the performance of the OpenFlow switch, in
order to determine the bounds of the performance measures.
In this paper, we propose Markov chain-based analytical model,
named AMOPE, for analyzing packet flow through an OpenFlow
switch, while defining the probabilistic bounds on performance
analysis. Additionally, in AMOPE, we propose a state diagram
based on the OpenFlow specification version 1.5.0, and calculate
the theoretical probabilities of a packet to be in different states
of the OpenFlow switch. Further, AMOPE defines the theoretical
bounds of OpenFlow performance measures such as the output
action, packet drop, and send to the controller probabilities.
Simulation-based analysis exhibits that approximately 60% of the
processed packets are sent to output action, 31% of the processed
packets are sent to the controller, and the remaining processed
packets are dropped in an OpenFlow switch.

Index Terms—OpenFlow, Software-Defined Networks, Markov
Chain, Performance Modeling, Packet Flow

I. INTRODUCTION

Software-defined network (SDN) enables in decoupling the
network control tasks from the tasks of packet forwarding and
processing [1] while dividing into two parts – the control
and the data planes. The control plane includes northbound
and southbound application programming interfaces (APIs).
Presently, OpenFlow is the most popular southbound API that
enables controller-switch interaction in SDN architecture.

An OpenFlow switch contains one or more flow-tables to
store packet forwarding rules. There are two types of flow-
tables, namely ingress and egress flow-tables. When a packet
arrives at the ingress port of an OpenFlow switch, it is matched
with the flow entries of the first flow-table and with the entries
of subsequent flow-tables, if required. Matched flow entry
provides a set of actions to be executed for the corresponding
packet. If no matching entry is found, the packet is dropped
or forwarded to the controller for installation of new rule
depending on the network policy. Each switch communicates
with each external controller via an OpenFlow channel.

In the existing literature, the researchers addressed the
different aspect of OpenFlow and SDN-controller interactions.
Additionally, OpenFlow version 1.5.0 [2] enabled hardware

The authors are with the Department of Computer Science and Engi-
neering, Indian Institute of Technology Kharagpur, India (Email: ayanmon-
dal@iitkgp.ac.in; smisra@sit.iitkgp.ernet.in; imaity@iitkgp.ac.in).

and software switches are considered by the researchers.
However, there is a need to analyze the performance of the
OpenFlow switch, in order to determine the bounds, i.e., prob-
abilistic bounds, of the performance measures, and to suggest
possible improvements. Additionally, researchers have pro-
posed different schemes and architectures for SDN, viz., [1],
[3], [4], while considering OpenFlow protocol and switches.
The proposed approaches require a substantial amount of time,
depending on the available hardware. Hence, there is a need of
an analytical model to evaluate the performance of OpenFlow.
The analytical model is to be used for evaluating the bounds
of performance metrics before the actual implementation or
simulation.

In the existing literature, there are very few works that
provide analytical model for performance analysis of an
OpenFlow-enabled network [5], [6], [7]. However, there is a
need of an analytical model to define the probabilistic bounds
of the OpenFlow protocol version 1.5.0 [2]. Moreover, there
is a need of an evaluation of the network performance, while
considering necessary parameters such as throughput, packet
processing time, delay, and packet drop count.

In this work, we model packet flow through an OpenFlow
switch as a Markov chain and formulate probabilistic expres-
sions for the network parameters. We consider that in the
presence of Internet of things (IoT) devices, the number of
mice flows[8] increases significantly. Therefore, there is a need
for packet-centric analysis of OpenFlow SDN. To the best
of our knowledge, this is the first Markovian model of SDN
architecture that considers the packet-centric analysis of an
OpenFlow switch. Our model is also the first one that takes
into consideration both the ingress and egress processing of
packets based on OpenFlow version 1.5.0 [2]. The primary
contributions of our work are summarized below.

1) Initially, an analytical model based on the existing
OpenFlow protocol [2] is developed using Markov chain. This
model depicts all the three stages of a packet life cycle inside
an OpenFlow switch such as waiting in switch queue, ingress
processing, and egress processing.

2) We perform a probabilistic analysis on the developed
model. Based on the analysis, we comment on different packet
flow probabilities such as output action probability, packet
drop probability, and send to controller probability.

3) Finally, in a simulated environment, we estimated neces-
sary parameters such as throughput, average delay per packet,
packet drop count, and average packet processing time.

ayan
For Personal Use Only

IEEE SYSTEMS JOURNAL 2

II. RELATED WORK

Two streams of the existing works are worth reviewing
related to the problem of performance improvement in the
presence of OpenFlow switches — (a) improvement of the
OpenFlow enabled networks [4], [9], and (b) performance
modeling of the OpenFlow architecture [5], [6], [10].

Concerning the improvement of the OpenFlow networks, in
the existing literature, Reitblatt et al. [9] developed a model for
OpenFlow networks that allows configuring the entire network
in one instance, while taking help of abstract operations.
Additionally, Katta et al. [3] provided a consistent network
update mechanism that addresses the trade-off between rule-
space overhead and update time. Meiners et al. [4] proposed
a compression technique for flow-table entries. Rego et al.
[11] proposed a vehicular traffic management scheme for
emergency situations with the help of SDN. In another scheme,
Rego et al. [12] proposed a learning-based error correction
scheme for SDN-based multimedia networks. Trestian et al.
[8] proposed a load balancing protocol for OpenFlow-based
data center networks (DCNs) with multipath routing. Kam-
panakis et al. [13] studied the application of SDN for ensuring
security in mobile devices.

Even though in the existing literature, researchers explored
different aspects in the context of OpenFlow and SDN and
different performance analytical models in other domains,
very few works address performance analysis of an OpenFlow
enabled SDN architecture. Javed et al. [7] evaluated the latency
for OpenFlow SDN considering OpenFlow version 1.0. Salah
et al. [14] proposed a Markovian analytical model using
queuing theory. The authors analyzed the performance of rule-
based firewalls in the presence of DoS attacks. Misra et al. [15]
studied the optimal buffer size of an OpenFlow switch using
C-M/M/1/K queuing model. Eager and Sevcik [16] studied
the performance bounds for single-class queuing networks
with fixed rates and delay service centers using mean-value
analysis. The authors claimed that the performance bounds
ensure the accuracy of the model.

On the other hand, few works in the existing literature,
which address the performance analysis of an OpenFlow-
enabled SDN architecture, are discussed here. Faraci and
Schembra [17] proposed a Markovian analytical model for
managing OpenFlow-based SDN customer premises equip-
ment, and evaluated the cost, theoretically. Jarchel et al. [6]
modeled the OpenFlow architecture as M/M/1 forward and an
M/M/1-S feedback queuing systems. This model measures the
delay in an OpenFlow switch, and estimates the total sojourn
time of a packet and probability of dropped packets. This work
is based on OpenFlow version 1.0.0, where each switch has a
single flow-table. The authors assumed the queue length of a
switch to be infinite. However, according to OpenFlow version
1.5.0 [2], each switch has multiple flow-tables (both ingress
and egress) with more number of match fields. In another
work, Azodolmolky et al. [5] modeled SDN using network
calculus. This model analyzes network performance from an
SDN controller’s perspective. Metter et al. [18] developed an
analytical model for network performance optimization while
considering table-occupancy and singling-rate of an OpenFlow

switch. On the other hand, Bianco et al. [10] compared the
performance of OpenFlow switching with that of link layer
Ethernet switching, and network layer IP routing. The authors
used the packet latency and the forwarding throughput as
major performance indicators.

Synthesis: Thus, we infer that there exist a few works on
analytical modeling of OpenFlow switch in the existing litera-
ture. Additionally, the researchers explored different aspects
of the OpenFlow switch. However, there is a need for an
analytical model to determine the bounds of the performance
metrics of an OpenFlow switch. Additionally, an analytical
model for OpenFlow version 1.5.0 in the presence of ingress
and egress flow-tables is in demand.

Fig. 1: State Diagram for Packet Flow in an OpenFlow Switch

III. PROPOSED ANALYTICAL OPENFLOW BOUNDS MODEL

In this work, we develop a Markovian model, named
AMOPE, to replicate behavior of an OpenFlow switch based
on OpenFlow switch specification version 1.5.0 [2], when
an incoming flow of packets passes through it. In AMOPE,
we consider multiple switches instead of a single switch
per controller. For each switch, we estimate the necessary
performance metrics considering packet queuing, ingress and
egress processing. The OpenFlow switch considers packet
level services. Therefore, in AMOPE, the switch takes each
packet as an individual entity, despite taking flow-specific data.
In this paper, we present a Markovian analysis of packet flow
through an OpenFlow switch using Markov chain [19], [20].
An OpenFlow switch has three parts — the switch queue,
and ingress and egress processing units. We describe the state
diagram and the probabilistic analysis of each part of an
OpenFlow switch in Sections III-B and III-C. In AMOPE,
we assume that — (1) each mouse flow comprises a few
number of packets, (2) the packet arrival process follows a
poison distribution, and (3) packet inter-arrival time follows
an exponential distribution.

A. Markovian Model: The Justification

We studied the behavior of an OpenFlow switch using
Markovian model [21], [22], as it follows the following
Markov properties:

ayan
For Personal Use Only

IEEE SYSTEMS JOURNAL 3

1) Each packet is processed individually, i.e., the behavior
of an OpenFlow switch is memoryless.

2) Packet processing in an OpenFlow switch is
a stochastic process having Markov properties, as
P (xn+1|Xn, Xn−1, Xn−2, · · · , X1) = P (xn+1|Xn), where
Xn, Xn−1, and Xn+1 are the present, immediate past, and
future state of a Markovian process, respectively.

B. State Diagram

We consider that when a packet is sent from the controller to
the OpenFlow switch, the packet gets queued, initially, before
entering the ingress processing unit, as shown in Figure 1. The
OpenFlow switch has a queue of length of size (Q+ 1), and
each ith position of the OpenFlow queue is denoted as Bi,
where 0 ≤ i ≤ Q. If the packet gets queued at Bi, it waits for
a finite duration in order to reach the 0th position of the queue,
B0. Thereafter, the packet enters the ingress processing unit of
the switch, and searches for a match at the 0th ingress flow-
table, F0. Hence, there can be table-hit, signifying a match
found in the table, or table-miss, when no match is found.
In case of table-hit, the OpenFlow switch executes one of the
instructions — (1) the packet goes to another ingress table Fj ,
j ∈ (0, N] or (2) the action mentioned in the action field of
the flow entry gets executed.

On the other hand, in case of table-miss, the packet follows
one of the possibilities — (1) pass to an ingress flow-table
Fj , where 0 < j ≤ N , (2) pass to the controller, according to
the table-miss flow entry, or (3) drop the packet, according to
the table-miss flow entry; or (4) drop the packet if there is no
table-miss flow entry.

After reaching to the ingress flow-table Fj , the packet is
matched against the flow-table entries. If there is table-hit,
either the packet gets forwarded to an ingress flow-table Fj′ ,
where j′ > j, or instructions are executed according to the
flow-table entry, as discussed earlier. On the other hand, in case
of table-miss, the packet gets forwarded either to an ingress
flow-table Fj′ , where j′ > j, to the controller, or gets dropped,
according to the table-miss flow entry.

After the processing of the packet at the ingress processing
unit, and the output action taken according to the table-hit at
the ingress flow-table. If the egress flag is set, the packet enters
the egress processing unit. Once the packet enters the egress
processing unit, the packet gets forwarded to the egress flow-
table Fe. The packet is matched against the flow-table entries.
For egress table-hit at (e+k)th egress flow-table Fe+k, where
0 ≤ k < M , the packet either gets forwarded to another
egress flow-table Fe+k′ , where k < k′ ≤ M , or forwarded
for executing action set as mentioned in the action field of
the matched entry. On the other hand, in case of table-miss,
the packet follows one of the options — (1) the packet gets
forwarded to the next egress flow-table Fe+k′ , from the egress
flow-table Fe+k, where k < k′ ≤ M ; (2) the packet is sent
to the controller; (3) the packet is dropped, according to the
egress table-miss flow entry; or (4) the packet is dropped if
there is no egress table-miss entry.

If the packet is sent to the controller, the controller handles
the packet and forwards the packet to the available SDN

switches, while either making modifications in the flow-table
entries or rerouting the packet. Otherwise, the controller also
has a provision to drop the packet.

C. Probabilistic Analysis

We consider that SDN is comprised of a single controller
unit and multiple OpenFlow switches. In this paper, we focus
on packet flow through an OpenFlow switch. We consider that
the probability of packet getting forwarded from the controller
to the specific switch having queue length (Q + 1), where
indexing starts from the 0th position, is p′. We consider that
the packets get forwarded to any of the available OpenFlow
switches without any biases. If there are S number of Open-
Flow switches in the network, we consider that the probability
of packet getting forwarded to OpenFlow switch s is defined
as p′ = 1

S . After getting forwarded by the controller, the packet
gets queued at the switch buffer. Considering that the queue
length is (Q+1), and the packet getting queued at any position
of the buffer is unbiased, i.e., equally probable, we get:

P (Bi|C) =
p′

Q+ 1
, where 0 ≤ i ≤ Q (1)

where Bi defines the ith position of the buffer, C denotes
the SDN-controller, and P (Bi|C) denotes the probability
of the packet getting forwarded to the buffer Bi from the
controller C. After getting queued at buffer Bi, the packet
gets forwarded to the next position of the OpenFlow queue,
Bi−1, sequentially. Hence, we get — P (Bi−1|Bi) = 1, where
0 < i ≤ Q. After reaching at B0, the packet enters the ingress
processing unit of the OpenFlow switch, i.e., the first ingress
flow-table F0. Hence, we have — P (F0|B0) = 1.

We consider that at the ingress flow-table Fj , the packet gets
matched against the flow-table entries of Fj . The packet finds
either table-hit or table-miss, as discussed in Section III-B. We
consider that the probability of having table-hit at the ingress
flow-table Fj is pj . Hence, the probability of table-miss at the
ingress flow-table Fj is (1−pj). Additionally, we consider that
in case of table-hit at ingress flow-table Fj , where 0 ≤ j < N ,
there are three equally probable events, i.e., considered to be
unbiased events, — (1) the packet gets forwarded to the egress
flow-table Fe, (2) the packet is handled according to the output
action, and (3) the packet gets forwarded to any of the next
ingress flow-tables, Fj′ , where j < j′ ≤ N . Hence, we get:

P (Fe|Fj) + P (O|Fj) +
∑

j<j′≤N

P (Fj′ |Fj ,TH) = pj (2)

where P (Fe|Fj), P (O|Fj), and P (Fj′ |Fj ,TH) define the
probability of the packet getting forwarded to the egress table
Fe, the probability of packet executed according to the output
action, and the probability of the packet getting forwarded to
flow-table Fj′ for table-hit, respectively. In case of table-miss
at the ingress flow-table Fj , there are three equally probable
unbiased events — (1) the packet gets forwarded to any of the
next ingress flow-tables Fj′ , where j < j′ ≤ N , (2) the packet
gets forwarded to the SDN controller, and (3) the packet gets
dropped. We get:

ayan
For Personal Use Only

IEEE SYSTEMS JOURNAL 4

P (C|Fj)+P (D|Fj)+
∑

j<j′≤N

P (Fj′ |Fj ,TM) = (1−pj) (3)

where P (Fj′ |Fj ,TM), P (C|Fj), and P (D|Fj) define the the
probability of the packet getting forwarded to the flow-table
Fj′ for table-miss, the probability of packet getting forwarded
to the controller, and the probability of the packet getting
dropped, respectively. Therefore, the probability P (Fj′ |Fj) of
the packet getting forwarded to a next ingress flow-table Fj′ ,
where 0 < j < j′ ≤ N , and the probability P (Fe|Fj) of the
packet getting forwarded to Fe are as follows:

P (Fj′ |Fj) =
1

3(N − j)
and P (Fe|Fj) =

pj
3

(4)

The packet cannot be forwarded to the ingress flow-table
Fj′ from the ingress flow-table Fj , i.e., P (Fj′ |Fj) = 0, where
0 ≤ j′ ≤ j ≤ N . If the packet finds a table-hit at the flow-table
FN , there are two equally probable events without biasness
— (1) the packet gets forwarded to the egress flow-table Fe,
and (2) the packet is handled according to the output action.
Therefore, the probability that the packet gets forwarded to Fe

from the ingress flow-table FN , is given as:

P (Fe|FN) =
pN
2

(5)

where pN is the probability of getting a table-hit at the ingress
flow-table FN . Similar to the ingress flow-tables, at the egress
flow-table Fe+k, we consider that the probability of getting
a table-hit is defined as pe+k. In case of table-hit, there are
two equally probable unbiased outcomes — (1) the packet
gets forwarded to any next egress flow-table Fe+k′ , and (2)
the packet is handled according to the output action. On the
other hand, in case of table-miss with probability (1− pe+k),
which adds three equally probable events such as (1) the
packet gets forwarded to any next egress flow-table, Fe+k′ ,
where 0 < k < k′ ≤M , (2) the packet gets forwarded to the
SDN controller, and (3) the packet gets dropped. Hence, the
probability P (Fe+k′ |Fe+k) of the packet getting forwarded to
the next egress flow-table Fe+k′ from the egress flow-table
Fe+k is expressed as follows:

P (Fe+k′ |Fe+k) =
pe+k

2(M − k)
+

1− pe+k

3(M − k)
=

2 + pe+k

6(M − k)
(6)

On the other hand, similar to the ingress flow-table rules,
the packet cannot be forwarded to any egress flow-table with
lower index, i.e., P (Fe+k′ |Fe+k) = 0, where 0 ≤ k′ ≤ k ≤
M . From Figure 1, we get that the packet may reach to the
output action state, denoted as O, form each ingress flow-
tables Fj , where 0 ≤ j ≤ N , and each egress flow-table Fe+k,
where 0 ≤ k ≤ M , when there is a table-hit. We define the
probability P (O|Fj) of the packet reaching to output action
state from any flow-table Fj , i.e., either ingress or egress flow-
table, is given as follows:

P (O|Fj) =

pj

3 , if 0 ≤ j < N
pj

2 , if j = N and e ≤ j < e+M
pj , if j = e+M

(7)

On the other hand, from Figure 1, we observe that the packet
may get dropped, where the state is represented as D, form
each ingress flow-table Fj , where 0 ≤ j ≤ N , and each egress
flow-table Fe+k, where 0 ≤ k ≤ M , in case of table-miss.
We define the probability P (D|Fj) of the packet reaching to
packet drop state from any flow-table Fj is given as follows:

P (D|Fj) =

{ 1−pj

3 , if 0 ≤ j < N and e ≤ j < e+M
1−pj

2 , if j = N and j = e+M
(8)

Similarly, from Figure 1, we get that the packet may be
forwarded to the SDN controller, where the state is represented
as C, form each ingress flow-table Fj , where 0 ≤ j ≤ N , and
each egress flow-table Fe+k, where 0 ≤ k ≤ M , in case of
table-miss. We define the probability P (C|Fj) of the packet
reaching to packet drop state from any flow-table Fj is given
as follows:

P (C|Fj) = P (D|Fj) (9)

Based on aforementioned state-transition conditional prob-
ability, we calculate the probability of the packet to be at the
aforementioned states. Based on Equation (1), the probability
that the packet has to be at ith position of the queue, Bi, where
0 ≤ i ≤ Q, i.e., P (Bi), at least once is defined as follows:

P (Bi) =

Q∑
j=i

p′

Q+ 1
= p′

(
1− i

Q+ 1

)
, 0 ≤ i ≤ Q (10)

where P (C) defines the probability of packet to be at SDN
controller. We consider that P (C) = 1. Based on Equation
(10), the probability P (F0) of the packet to be processed
at the ingress flow-table F0 is calculated as P (F0) =
P (F0|B0)P (B0) = p′. The packet reaches the ingress flow-
table F1, if and only if the packet gets forwarded by the
ingress flow-table F0. Hence, from Equation (4), the prob-
ability P (F1) of packet being in the ingress flow-table F1

is defined as P (F1) = P (F1|F0)P (F0) = p′

3n . Additionally,
from Equation (4), the probability P (Fj) of the packet getting
processed at the ingress flow-table Fj , where 1 < j ≤ N , is
calculated as follows:

P (Fj) =

j−1∑
j′=0

P (Fj |Fj′)P (Fj′) =
p′

3N

j−1∏
j′=1

[1 +
1

3(N − j′)
]

(11)
From Figure (1), we observe that the packet can reach to

egress flow-table Fe from any ingress flow-table Fj , where
0 ≤ j ≤ N . Hence, based on Equations (4), (5), and (11), the
probability P (Fe) of the packet to be processed at the egress
flow-table Fe is defined as follows:

ayan
For Personal Use Only

IEEE SYSTEMS JOURNAL 5

 0

 2

 4

 6

 8

 10

0 50 100 150 200 250

(a) Arrival Rate = 199147 pps

P
ac

k
et

 S
en

t
to

 O
u

tp
u
t

(i
n
 M

b
p
s)

Payload (in Bytes)

 6

 6.5

 7

 0

 2

 4

 6

 8

 10

0 50 100 150 200 250

(b) Arrival Rate = 200633 pps

Payload (in Bytes)

 6

 6.5

 7

Sec 1 Sec 2 Sec 3 Sec 4 Sec 5

Fig. 2: Sent to Output Rate of an OpenFlow Switch

P (Fe) =

N∑
j=0

P (Fe|Fj)P (Fj) (12)

Additionally, we observe that the packet can only reach the
egress flow-table Fe+1 from the egress flow-table Fe. Hence,
using Equations (6) and (12), we get the probability P (Fe+1)
of the packet to be processed at egress flow-table Fe+1 is as
follows:

P (Fe+1) = P (Fe+1|Fe)P (Fe) =

(
2 + p

6M

)
P (Fe) (13)

Using Equations (6), (12), and (13), we define the proba-
bility P (Fe+k) of the packet being processed at egress flow
Fe+k, where 1 < k ≤M , as follows:

P (Fe+k) =
(2 + p)

6M
P (Fe)

k−1∏
k′=1

[
1 +

2 + p

6(M − k′)

]
(14)

1) Output Action Probability: As shown in Figure 1, the
packet reaches the output action state from either ingress flow-
table Fj , where 0 ≤ j ≤ N , or egress flow-table Fe+k, where
0 ≤ k ≤M . Hence, the probability P (O) of the packet being
in the output action state depends on Equations (6), (7), and
(11)–(14). We define P (O) as follows:

P (O) =

N∑
j=0

P (O|Fj)P (Fj)+

M∑
k=0

P (O|Fe+k)P (Fe+k) (15)

2) Packet Drop Probability: From Figure 1, we observe
that the packet reaches the packet drop state D from either
ingress flow-table Fj , where 0 ≤ j ≤ N , or egress flow-table
Fe+k, where 0 ≤ k ≤ M . Hence, the probability P (D) of
the packet getting dropped depends on Equations (6), (8), and
(11)–(14). We define P (D) as follows:

P (D) =

N∑
j=0

P (D|Fj)P (Fj) +

e+M∑
k=e

P (D|Fk)P (Fk) (16)

3) Send to Controller Probability: From Figure 1, we get
that the packet reaches the controller from either an ingress
flow-table Fj , where 0 ≤ j ≤ N , or an egress flow-table
Fe+k, where 0 ≤ k ≤M . Hence, the probability of the packet
getting forwarded to the controller depends on Equations (6),
(9), and (11)–(14). We define P (C) as follows:

P (C) =

N∑
j=0

P (C|Fj)P (Fj)+

M∑
k=0

P (C|Fe+k)P (Fe+k) (17)

which is same as P (D). Moreover, using Stirling’s approxi-
mation formula, we evaluate the upper and lower bound for
P (Fe), P (Fe+k), P (O), and P (D).

IV. PERFORMANCE ANALYSIS

In this Section, using AMOPE, we analyze the performance
of packet flow through an OpenFlow switch in SDN. We
evaluate the performance of AMOPE based on the parameters
mentioned in Section IV-B. We have simulated the proposed
model in the MATLAB simulation platform. For simplicity, we
consider that the number of OpenFlow switch in SDN is two,
i.e., p′ = 1

2 , where p′ is the probability of the packet getting
forwarded to the concerned switch. Additionally, we consider
that if a packet is forwarded to the controller, it eventually, is
queued in an OpenFlow switch.

A. Simulation Parameters

In AMOPE, simulations are performed for the OpenFlow
switch in SDN with a single controller and two OpenFlow
switches. We consider that the packet arrival rate and the
packet service rate per OpenFlow switch are approximately
0.2 million packets per second (mpps) [5] and 0.03 mpps [23],
respectively. We consider different simulation parameters, as
shown in Table I. The simulation time is 5 sec, queue size per
OpenFlow switch is 0.73 million packets [5]. We consider that
there are 10 number of ingress flow-tables and either zero or
10 number of egress flow-tables, as shown in Table I.

ayan
For Personal Use Only

IEEE SYSTEMS JOURNAL 6

 0

 15

 30

 45

0 50 100 150 200 250

(a) Arrival Rate = 199147 pps

P
ac

k
et

 D
ro

p
 (

in
 M

b
p
s)

Payload (in Bytes)

 40

 45

 0

 15

 30

 45

0 50 100 150 200 250

(b) Arrival Rate = 200633 pps

Payload (in Bytes)

 40

 45

Sec 1 Sec 2 Sec 3 Sec 4 Sec 5 Theomin Theomax

Fig. 3: Packet Drop Rate of an OpenFlow Switch

 0

 2

 4

 6

 8

 10

0 50 100 150 200 250

(a) Arrival Rate = 199147 pps

P
ac

k
et

 S
en

t
to

 C
o

n
tr

o
ll

er

 (
in

 M
b
p

s)

Payload (in Bytes)

 7.5

 8

 8.5

 0

 2

 4

 6

 8

 10

0 50 100 150 200 250

(b) Arrival Rate = 200633 pps

Payload (in Bytes)

 7.5

 8

 8.5

Sec 1 Sec 2 Sec 3 Sec 4 Sec 5 Theomin Theomax

Fig. 4: Send to Controller Rate

TABLE I: Simulation parameters

Parameter Value
Number of OpenFlow switch 2

Packet arrival rate per switch 0.199147, 0.199731,
0.200633 mpps

Packet service rate per switch 0.03 mpps [23]
Queue size per switch 0.73 million packets [5]
Flow table lookup time 33.33333 µsec [23]
Number of ingress tables 10

Number of egress tables {0, 10}

B. Performance Metrics

We evaluated the performance of the OpenFlow switch
based on the Markov chain-based analytical model with differ-
ent packet arrival rates 0.199147, 0.199731, 0.200633 million
packets per second (mpps), while considering the following
parameters:

Throughput: We consider that the throughput of an Open-
Flow switch is defined as the number of packets processed,
i.e., reaches the output action state. A packet can reach the

output action state from any ingress or any egress flow-tables.

Number of Packets Dropped: A packet can be dropped
due to following reasons — there is no table-miss entry for
ingress and egress flow-table or the table-miss entry is to drop
the packet, the output action is not defined for matched entry
at ingress or egress flow-table, and the action specified by the
table-miss flow entry is drop.

Number of Packets Sent to Controller: A packet is sent
to the controller if the action mentioned in the table-miss entry
is to forward a packet to the controller. The packets, which
are forwarded to the controller from the OpenFlow switches,
are considered to be queued again in one of the available
OpenFlow switches.

Average Queuing Packet Delay: We calculate the average
queuing packet delay as the duration between time stamp when
a packet enters into OpenFlow switch, and the time stamp
when the packet enters through ingress port for processing.

Packet Processing Time: We consider the packet process
time is the duration between the time stamp when a packet
enters to ingress flow-table F0 and the time stamp when the
packet gets out of the switch.

ayan
For Personal Use Only

IEEE SYSTEMS JOURNAL 7

0

10

20

30

40

0 50 100 150 200 250

(a) Arrival Rate = 199147 pps

A
v
er

ag
e

Q
u
eu

in
g

 D
el

ay

 (
in

x

1
0

2
 s

)

Payload (in Bytes)

0

10

20

30

40

0 50 100 150 200 250

(b) Arrival Rate = 200633 pps

Payload (in Bytes)

Sec 1 Sec 2 Sec 3 Sec 4 Sec 5

Fig. 5: Average Queuing Delay

24.84

24.85

24.86

24.87

24.88

24.89

0 50 100 150 200 250

(a) Arrival Rate = 199147 pps

A
v

er
ag

e
P

ac
k

et
 P

ro
ce

ss
in

g

 T
im

e
(i

n
 m

s)

Payload (in Bytes)

24.78

24.79

24.80

24.81

24.82

0 50 100 150 200 250

(b) Arrival Rate = 200633 pps

Payload (in Bytes)

Sec 1 Sec 2 Sec 3 Sec 4 Sec 5

Fig. 6: Average Packet Processing Delay

C. Result and Discussion

In AMOPE, for simulation, we generated random numbers
from the Poisson distribution with the mean packet arrival
rate 0.2 mpps. Additionally, we considered randomness, while
taking a decision on table-hit and table-miss. If there is table-
miss flow entry, and action mentioned for table-miss flow entry
is to forward to the controller, the packets get queued again
in the OpenFlow switch buffer.

From Figure 2, we observed that approximately 60% of
the arrived number of packets are sent for output action. In
Figure 2, the throughput of an OpenFlow switch increases
with the increase in payload size. Additionally, we get that
the throughput in each second is almost similar. Hence, we
conclude that the throughput of an OpenFlow switch depends
on the payload as well as on the number of matched packets.
On the other hand, Figure 3 shows that almost 9% of the
packets are dropped, as there is either no table-miss flow entry
for ingress and egress of flow-tables, the action mentioned
in the table-miss flow entry is packet drop, or any output
action is not mentioned in the matched entry. Here, based on
Figure 3, we argue that the packet drop (in Mbps) increases
with the increase in payload. Additionally, we conclude that

OpenFlow considers each packet as an individual entity, and
process separately. Additionally, from Figure 4, we yield that
the approximately 31% of the arrived packets are sent to the
controller, and sent back to OpenFlow switch queue again.
From Figures 2, 3, and 4, we observed that the simulated
results lie within the theoretical minimum and maximum
values obtained using the proposed analytical model of an
OpenFlow switch.

Figures 5 and 6 depict two types of delay of the OpenFlow
switch such as queuing and processing delay. From Figure 5,
we observed that the average queuing delay is much higher
compared to processing delay. Hence, we conclude that the
packet delay at OpenFlow switch increases mostly due to the
packet queuing delay. On the other hand, from Figure 6, we
observed that the average packet processing time is almost
similar for each time instant. For each time instant, the packet
processing delay is in the range [33.3333 µsec − 0.025 sec].
We get approximately 0.02 sec processing delay, in case of the
packet has to go through for match entries for each ingress and
egress flow-tables. In Figure 6, we observed that the average
processing delay varies randomly for different arrival rate, as
the packet processing delay solely depends on the number

ayan
For Personal Use Only

IEEE SYSTEMS JOURNAL 8

of flow-tables the packet has to go through for finding a
match. Additionally, from Figures 5 and 6, we yield that delay
factor are almost linear with the variation of payload, as the
processing time in an OpenFlow switch depends on the header
size of the packet, i.e., the matched field entries, and does not
depends on the payload.

Hence, we argue that the packet delay can be improved,
while using an efficient queuing algorithm for an OpenFlow
switch. On the other hand, the packet drop rate is too high
for an OpenFlow switch due to limitations of TCAM memory
size, and the mismatch of rules. Hence, we suggest that the
packet drop rate can be improved, while using TCAM memory,
efficiently, and using a proper rule placement mechanism.

V. CONCLUSION

In this paper, we analyzed the performance of packet
flow through an OpenFlow switch in SDNs and proposed an
analytical model, named AMOPE, to define the probabilistic
bounds of the performance metrics of the OpenFlow switch.
We modeled the packet flow steps in an OpenFlow switch
using Markov chain, and calculated theoretical probabilities
of the packet to be any state. Additionally, we have calculated
the probabilities of a packet being at output action state, packet
getting dropped, and packet getting forwarded to the controller,
theoretically. We also verified the theoretical findings using the
MATLAB simulation platform. We infer that in an OpenFlow
switch, the total delay is high due to high delay at the queue
of the OpenFlow switch. On the other hand, in an OpenFlow
switch, a high number of packets get dropped due to either
not having table-miss flow entry, or output action not being
specified.

Future extension of this work is to propose an efficient
queuing scheme, so that queuing delay of packet flow gets
reduced significantly. In addition, this work can be extended
to understand how packet drop rate can be reduced while using
the available TCAM memory in an OpenFlow switch.

REFERENCES

[1] D. Kreutz, F. M. V. Ramos, P. E. Verı́ssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-Defined Networking: A Com-
prehensive Survey,” in Proc. of IEEE, vol. 103, no. 1, January 2015, pp.
14–76.

[2] OpenFlow. (2014, Dec.) OpenFlow Switch Specification Version 1.5.0.
Open Networking Foundation.

[3] N. P. Katta, J. Rexford, and D. Walker, “Incremental Consistent Up-
dates,” in Proc. of ACM SIGCOMM Works. New York, NY, USA:
ACM, 2013, pp. 49–54.

[4] C. R. Meiners, A. X. Liu, and E. Torng, “Bit Weaving: A Non-Prefix
Approach to Compressing Packet Classifiers in TCAMs,” IEEE/ACM
Trans. on Net., vol. 20, no. 2, pp. 488–500, April 2012.

[5] S. Azodolmolky, R. Nejabati, M. Pazouki, P. Wieder, R. Yahyapour,
and D. Simeonidou, “An Analytical Model for Software Defined Net-
working: A Network Calculus-Based Approach,” in Proc. of IEEE
GLOBECOM, December 2013, pp. 1397–1402.

[6] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, and P. Tran-Gia,
“Modeling and Performance Evaluation of an OpenFlow Architecture,”
in Proc. of Int. Tele. Cong., 2011, pp. 1–7.

[7] U. Javed, A. Iqbal, S. Saleh, S. A. Haider, and M. U. Ilyas, “A stochastic
model for transit latency in OpenFlow SDNs,” Comp. Net., vol. 113, pp.
218 – 229, 2017.

[8] R. Trestian, K. Katrinis, and G. Muntean, “OFLoad: An OpenFlow-
Based Dynamic Load Balancing Strategy for Datacenter Networks,”
IEEE Trans. on Net. Serv. Man., vol. 14, no. 4, pp. 792–803, Dec 2017.

[9] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for Network Update,” in Proc. of ACM SIGCOMM, New
York, NY, USA, 2012, pp. 323–334.

[10] A. Bianco, R. Birke, L. Giraudo, and M. Palacin, “OpenFlow Switching:
Data Plane Performance,” in Proc. of IEEE Int. Conf. on Comm., May
2010, pp. 1–5.

[11] A. Rego, L. Garcia, S. Sendra, and J. Lloret, “Software Defined
Networks for Traffic Management in Emergency Situations,” in Proc.
of the 5th Int. Conf. on SDS, Apr. 2018, pp. 45–51.

[12] A. Rego, A. Canovas, J. M. Jimnez, and J. Lloret, “An Intelligent System
for Video Surveillance in IoT Environments,” IEEE Access, vol. 6, pp.
31 580–31 598, 2018.

[13] P. Kampanakis, H. Perros, and T. Beyene, “SDN-based solutions for
Moving Target Defense network protection,” in Proc. of IEEE Int. Sym.
on a World of Wireless, Mobile and Mult. Net., June 2014, pp. 1–6.

[14] K. Salah, K. Elbadawi, and R. Boutaba, “Performance Modeling and
Analysis of Network Firewalls,” IEEE Trans. on Net. and Serv. Man.,
vol. 9, no. 1, pp. 12–21, March 2012.

[15] S. Misra, A. Mondal, and S. Khajjayam, “Dynamic big-data broadcast
in fat-tree data center networks with mobile iot devices,” IEEE Systems
Journal, pp. 1–8, 2019.

[16] D. L. Eager and K. C. Sevcik, “Performance Bound Hierarchies for
Queueing Networks,” ACM Transactions on Computer Systems, vol. 1,
no. 2, pp. 99–115, May 1983.

[17] G. Faraci and G. Schembra, “An Analytical Model to Design and
Manage a Green SDN/NFV CPE Node,” IEEE Trans. on Net. and Ser.
Man., vol. 12, no. 3, pp. 435–450, September 2015.

[18] C. Metter, M. Seufert, F. Wamser, T. Zinner, and P. Tran-Gia, “Analytical
Model for SDN Signaling Traffic and Flow Table Occupancy and Its
Application for Various Types of Traffic,” IEEE Trans. on Net. and Ser.
Man., vol. 14, no. 3, pp. 603–615, September 2017.

[19] G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed
Coordination Function,” IEEE J. on Sel. Areas in Comm., vol. 18, no. 3,
pp. 535–547, March 2000.

[20] A. Markov, “Extension of the Limit Theorems of Probability Theory to
a Sum of Variables Connected in a Chain,” in Dynamic Probabilistic
Systems (Volume I: Markov Models). John Wiley & Sons, Inc., 1971,
pp. 552–577.

[21] M. A. Marsan, G. Conte, and G. Balbo, “A Class of Generalized
Stochastic Petri Nets for the Performance Evaluation of Multiprocessor
Systems,” ACM Trans. on Comp. Sys,, vol. 2, no. 2, pp. 93–122, May
1984.

[22] J. Suzuki, “A Markov Chain Analysis on Simple Genetic Algorithms,”
IEEE Trans. on Syst., Man, and Cyb., vol. 25, no. 4, pp. 655–659, April
1995.

[23] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore,
“OFLOPS: An Open Framework for OpenFlow Switch Evaluation,” in
Proc. of Int. Conf. on Pas. and Act. Net. Meas. Springer, 2012, pp.
85–95.

ayan
For Personal Use Only

