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Abstract—In this work, the problem of dynamic micro-grid
selection by the plug-in electric vehicles (PEVs) in smart grid
is studied as an evolutionary game theoretic approach. In the
proposed dynamic micro-grid selection game, named DMSG, each
PEV chooses an optimal micro-grid for energy consumption with
an optimum price. In DMSG, the PEVs act as the players and
form the population. The micro-grids are considered as strategies.
The amount of energy requested to each micro-grid is considered
as the population share of the micro-grid. Each PEV selects the
micro-grid, based on prediction, for charging, and decides the
amount of energy to be consumed. Thereby, the PEVs select
the Pareto optimal solutions and ensure the proper energy-load
distribution. Through simulation, we observe that within 20-25
iterations, Pareto optimal solution is accomplished. Additionally,
DMSG ensures proper distribution of energy demand of the
PEVs, while the PEVs pay less.
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I. INTRODUCTION

With the integration of sustainable models of energy
production, distribution, and usage [1], the traditional electrical
grid is visualized to ensure high reliability, and termed as smart
grid. In smart grid, a group of micro-grids serves a group of
PEVs in a distributed manner, and relax the load on the main
grid. In smart grid, each micro-grid uses renewable energy
resources — biomass energy, solar energy, wind power, and
geothermal heat for generating energy. Therefore, each micro-
grid generates different amount of energy in each slot of a
day. Therefore, the PEVs [2] either have to pay high or have
to wait for a finite time duration to get energy service. In the
last few years, a lot of research work on smart grid emerged,
viz., [2]–[4]. Some existing works are discussed in this Section.
Misra et al. [3] proposed a dynamic pricing scheme for PEVs.
Farzan et al. [1] formulated a distributed energy management
scheme for energy forecasting. Mondal et al. [4] proposed an
energy management system, where users are equipped with
storage devices. Mondal and Misra [2] have proposed to use a
multi-leader multi-follower Stackelberg game for distributing
the energy among the PEVs, non-cooperatively. However, there
is need to design a cooperative scheme for PEVs, such that the
Pareto optimal solution can be achieved by selecting a suitable
micro-grid in a distributed manner.

In this paper, we introduce an evolutionary game theo-
retic approach for designing of dynamic micro-grid selection
(DMSG) for PEVs in the presence of multiple predicted micro-
grids in smart grid. We use a dynamic evolutionary game to
select the appropriate strategies for the PEVs to choose the

appropriate micro-grid in order to maintain the quality service
and proper load distribution. On the other hand, the strategies
for the micro-grids to maximize their profit by supplying
the requested energy, while assuring proper utilization of the
generated energy. The evolutionary equilibrium solution, i.e.,
Pareto optimal solution of DMSG is ensured. MDMS predicts
the next location of each PEV and distributes the energy
accordingly. On the other hand, each micro-grid evaluates the
price per unit energy depending on the aggregated energy
demanded by the PEVs using dynamic pricing.

II. SYSTEM MODEL

We consider an energy management system having mul-
tiple micro-grids and multiple PEVs. Each PEV can get
connected to a single micro-grid for energy supply. Thereby,
we consider that at time instant t, the set of PEVs getting
energy service from micro-grid m is denoted as Vm. Each PEV
v having residual energy Eres

v chooses one of the available set
micro-grids Mv calculated based on order 2 (O(2)) Markov
predictor with fallback [5] in the duration ∆Tv . We consider
that the energy consumption rate for PEV v is denoted as
αv(νv), while considering that the velocity of the PEV v is
νv . We consider that each PEV v requests xv(t) amount of
energy to micro-grids m. Hence, the total amount of energy
requested Xm(t) to micro-grid m, which has generated Gm(t)
amount of energy, follows the equations given below:

Xm(t) =
∑

v∈Vm

xv(t), and Gm(t) ≥ Xm(t) (1)

In this work, in order to ensure proper distribution of requested
energy among the micro-grids, we use a dynamic pricing
mechanism [3] for deciding the price per unit energy pm(t),
which is calculated as follows:

pm(t) = Am(Xm(t))
2
+ BmXm(t) + Cm (2)

where Am, Bm, and Cm are constants for micro-grid m.

III. PROPOSED DMSG GAME

To study dynamic micro-grid selection by the PEVs, and
the energy trading between the PEVs and the micro-grids, we
use an evolutionary game theoretic approach [6]. In the pro-
posed dynamic micro-grid selection scheme, named DMSG,
we consider that the PEVs are the players and form the
population of DMSG. Using DMSG, we propose to distribute
the total population among the available strategies. On the
other hand, the micro-grids are considered as the strategies.
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Fig. 1: Energy Demand using DMSG
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Fig. 2: Price Paid by the PEVs
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Fig. 3: Profit per Micro-Grid

We define the population share of micro-grid m as follows:

ωm(t) = Xm(t)/
∑

m∈M

Xm(t) (3)

1) Utility Function of a PEV: The utility function Uv(·)
signifies the satisfaction of a PEV v by consuming xv(t)
amount of energy. In DMSG, each PEV tries to maximize
its payoff, while ensuring that the transferable utility of the
population gets maximized. The payoff of utility function Uv(·)
— (a) increases with the increase in xv(t), (b) decreases
with the increase in pm and satisfaction factor Sv(t), where
Sv(t) = xv(t)(E

max
v − Eres

v ) with constant λ. Hence, the
utility function Uv(·) of PEV v is defined as follows:

Uv(·) = E
max

v
xv(t) − λSv(t)xv(t)

2
− pmxv(t) (4)

2) Utility Function of a Micro-Grid: The utility function
Bm(·) of micro-grid m signifies the profit of the micro-grid m
earned by distributing Xm(t) energy, and defined as follows:

Bm(·) =
∑

v∈Vm

xv(t)pm(t) (5)

Each micro-grid m tries to maximize its payoff value of Bm(·),
while satisfying the constraint given in Equation (1).

3) Replicator Dynamics of DMSG: Each micro-grid m acts
as a replicator in the evolutionary game theory-based DMSG
scheme. We define the replicator dynamics of the proposed
scheme, DMSG, as follows:

ω̇m(t) = σωm(t)
(

Bm(·) − B(·)
)

(6)

where σ is a constant. B(·) is the transferable utility of the

micro-grids, where B(·) =
∑

m∈M

Bm(·)ωm(t).

IV. PERFORMANCE EVALUATION

For performance evaluation, we generated random values
for initial locations of the PEVs over a terrain, as shown in
Table I, using MATLAB simulation platform. We consider that
each micro-grid calculates the real-time supply and energy
demand of connected PEVs at the beginning of each time slot.
The performance of DMSG scheme is evaluated by comparing
with ENTRANT [2]. In ENTRANT, Mondal and Misra [2]
proposed to use a multi-leader multi-follower Stackelberg
game for distributing the energy among the PEVs. However,
they have not considered cooperativeness of the PEVs.

Initially, each PEV selects one of the available micro-grids
in DMSG. Thereafter, based on the replicator dynamics, the
energy demand to each micro-grid gets modified in each iter-
ation. From Figure 1, we observed that the energy demand to

TABLE I: Simulation Parameters

Parameter Value

Simulation area 10 × 10 km2

Number of micro-grids 4
Number of PEVs 1-250
PEV’s requested energy 35-65 MWh
Micro-grid’s generated energy 500-750 MWh
Generation cost per MWh energy 10-20 USD

each micro-grid reaches to the evolutionary equilibrium within
20-25 iterations using DMSG. Additionally, we observed that
strategy with high population share has a high rate of change
in population share. From Figure 2, we observed that average
price per unit energy reduces significantly using DMSG than
using ENTRANT. On the other hand, the price decided by each
micro-grid is almost same using DMSG as shown in Figure 3.
However, the price per unit energy decided by each micro-grid
while using ENTRANT varies significantly, due to varied the
energy requested to each micro-grid.

V. CONCLUSION

In this paper, the evolutionary game theory-based DMSG
scheme ensures proper load distribution in the presence of
PEVs. We observed that Pareto optimal solution is accom-
plished using DMSG. The simulation results also show sig-
nificant improvement. Future extension of this work includes
understanding how the presence of storage devices at the
micro-grid will influence the situation, where the PEVs are
present with finite storage capacity. This work can be extended
in the presence of malicious PEVs, which intend to increase
the price per unit energy with the false-high energy demand.
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