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Abstract. In this work, the problem of unbalanced data traffic in the
presence of heterogeneous Internet of things (IoT) applications in software-
defined data center networks (DCNs) is studied. In the existing literature,
the presence of heterogeneous flows and switches and mobile IoT devices
in software-defined DCN are not considered. Due to heterogeneity, it be-
comes an NP-hard problem. To address these issues in polynomial time,
we proposed a data traffic management scheme, named FASCES, using
the single-leader-multiple-followers Stackelberg game. In FASCES, each
controller acts as the leader and the IoT applications act as the followers.
Each leader and follower aim to achieve an optimal distribution of flow
rules and optimal datarate, respectively. We also evaluate the existence of
at least one Stackelberg equilibrium solution in FASCES. Furthermore,
we evaluated the performance of FASCES while comparing it with the
existing schemes through simulation. We observe that FASCES ensures
a 16.67-19.45% increase in network throughput and a 4.34-9.43% reduc-
tion in network delay. Additionally, using FASCES, the per-flow delay
reduces by 27.78-36.67% while ensuring a 15.37-26.91% increase in the
per-flow throughput.

Keywords: IoT, Load Balancing, Software-Defined Networks, Data Cen-
ter Networks, Heterogeneous Flow, Heterogeneous Switches, Stackelberg
game.

1 Introduction

With technological advancement, the Internet of things (IoT) devices are capa-
ble of generating a huge amount of data, which are to be stored in data centers
or managed by the backbone of the data center networks (DCNs). Additionally,
these IoT devices are heterogeneous in terms of computation and memory capac-
ity. As a result, these devices are capable of handling heterogeneous applications
in terms of datarate requirements. To handle these heterogeneous applications,
we envision using the fat-tree architecture-based DCN, which enables to reduce
the single point failure. On the other hand, we consider that software-defined
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networking (SDN) is one of the promising technology which can enable the fat-
tree DCN for balanced data traffic in the presence of heterogeneous applications.
In SDN, due to having a centralized overview of the network, the network failures
also can be reduced. However, in the existing literature, the heterogeneity of the
flows while designing the schemes for software-defined DCNs is not considered.

Software-defined DCN is an integrating architecture of fat-tree DCN, which
follows a hierarchical architecture, and SDN. We envision that instead of having
a single controller for the overall network, each pod has a dedicated controller in
addition to the centralized controller. Thereby, it reduces the load on the cen-
tralized controller and also helps in the efficient management of the network. In
the existing literature, researchers focused on designing schemes, viz. [15,28] for
the data management and flow rule placement. However, none of these schemes
consider the presence of heterogeneous flows in the network. Additionally, few
works, viz. [20], focused on managing the heterogeneous flows in SDN. How-
ever, these works are capable of providing a local solution and cannot ensure
balanced traffic distribution globally. On the other hand, few data transmission
schemes, viz. [18], for DCN are proposed by the researchers. However, none of
the schemes consider the heterogeneity among the switches and the presence
of SDN architecture. Therefore, we argue that we need a design of an efficient
data flow management scheme for software-defined DCN while considering the
quality of service (QoS) parameters such as per-flow throughput and delay, and
overall network throughput and delay.

In this work, we design a QoS-aware flow management scheme, named FASCES,
for software-defined DCN to ensure that heterogeneous applications generated
by the IoT devices are served efficiently while allocating the network resources
dynamically for each application. We use a single-leader-multiple-followers Stack-
elberg game to design the scheme - FASCES. In FASCES, each controller acts as
the leader and decides the flow rule association among the incoming flows and
the available switches. On the other hand, the IoT applications are considered
to be the followers in FASCES. These followers aim to achieve a high datarate
while satisfying a delay bound, which depends on the type of applications. To
summarize, the contributions of this chapter are as follows:

(i) We design a dynamic flow management scheme, named FASCES, for software-
defined DCN in the presence of mobile IoT devices, while ensuring high QoS
in terms of throughput and delay.

(ii) We use a single-leader-multiple-follower Stackelberg game to design the
interactions between the IoT applications and the controllers. We also
evaluate the existence of the Stackelberg equilibrium for FASCES. Us-
ing FASCES, we eventually obtain an optimal distribution of flows in the
software-defined DCN and optimal datarate of the IoT applications.

(iii) We evaluate the performance of FASCES in terms of per-flow throughput
and delay, and overall network throughput and delay, while comparing with
the existing schemes.

The rest of the chapter is organized as follows. In Section 2, we briefly present
the related works in the area of resource management in SDN as well DCN, and
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identified the lacuna in the existing works. The system model and the proposed
FASCES scheme are described in Sections 3 and 4, respectively. Thereafter, we
analyze the performance of FASCES in Section 5 while comparing with the
existing schemes through simulation. Finally, we conclude the chapter while
citing a few future directions in Section 6.

2 Related Works

In this section, we survey the related literature on traffic engineering schemes for
DCNs and SDNs in detail. The existing literature related to traffic engineering
of SD-DCNs is divided into two categories — resource management in SDNs
and DCNs.

Resource Management in SDNs: In the existing literature, Bera et al. [6]
studied different aspects of resource allocation in SDN for IoT. Saha et al. [28]
proposed a flow-rule aggregation scheme for SDN, while focusing on the problem
of over-subscription. The authors used a key-based aggregation policy to reduce
the number of flow rules. In another work, Maity et al. [15] proposed a tensor-
based flow-rule aggregation scheme in SDN. Sadeh et al. [26] designed a flow-
traffic aware rule placement scheme while reducing the usage of TCAM space.
On the other hand, an optimal multipath flow management scheme is proposed
by Rottenstreich et al. [25] while considering network heterogeneity in terms
of network path in SDN. Mondal et al. [21] modeled a data traffic management
scheme while considering that the data volume associated with the flows is known
a priori. an SDN-based network storage scheme is proposed by Wang et al. [34]
in the absence of any physical storage. For reducing the usage of oversubscribed
buffer, Li et al. [14] suggested not to store the entire packet at the switch but
only the packet header. Hayes et al. [13] studied the traffic-classification in SDN.
In another work, Saha et al. [27] proposed a QoS-aware routing scheme for SDN,
while maximizing end-to-end delay and considered different types of flows in
terms of delay- and loss-sensitivity. Bera et al. [5] studied a mobility-aware SDN
and attempted to maximize the overall network performance.

Having a centralized overview of the network in SDN, controller can reduce
the packet drop and delay while ensuring efficient data traffic management [1].
Tseng et al. [32] designed a scheme for ensureing path stability in hybrid SDN.
In this work, initially, the paths are calculated distributively and locally while
reducing the computational complexity. Thereafter, the paths are re-evaluated
centrally to ensure high stability. Misra and Bera [16] proposed a task offload-
ing scheme for an SDN-based fog network. The authors minimized the delay
in task offloading and computation while selecting the optimal number of fog
nodes. Singh et al. [30] proposed a hash-based flow-table to reduce the flow-table
lookups. In another work, Aujla et al. [4] proposed a traffic flow management
scheme in SDN. Moreover, a traffic engineering scheme is proposed by Moradi et
al. [23] for SDN-based ISP networks in the presence of heterogeneous links and
switches. A fair resource allocation scheme is designed by Allybokus et al. [3]
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in multipath SDN. Sanvito et al. [29] also proposed a flow-table reconfiguration
scheme, while considering overlapping data flow paths.

Resource Management in DCNs: In existing literature, researchers stud-
ied Fat-tree DCNs [2], [12]. The different challenges of DCN such as generation,
processing, and storage of data is studied by Chen et al. [11] in the presence of
various applications such as social networks, healthcare, smart grid, and manag-
ing enterprises. Similarly, Chakraborty et al. designed schemes for provisioning
sensor-based services in data center networks while considering economic as-
pect [7, 9] and resource orchestration [8, 17, 19]. A network selection scheme for
multimedia data delivery in ad-hoc networks proposed by Trestian et al. [31].
Moreover, the optimal server positioning scheme is proposed by Paul et al. [24]
while minimizing the maintenance cost.

Synthesis

Based on the study of the existing works, we observe that a few schemes are
proposed for data traffic management in SDN as well as DCN. However, the
researchers have not considered the presence of heterogeneous applications and
switches in the existing literature. Additionally, efficient management of hetero-
geneous data traffic in software-defined DCN while ensuring optimized QoS in
terms of high throughput and low delay is one of the important aspects which
needs to be addressed.

3 System Model

We consider an SDN-enabled Fat-Tree architecture of DCN [18]. A general fat-
tree architecture is composed of three layers – edge, aggregation, and core layers,
which enables reducing the bottleneck in transmission as well as is capable of
handling the single point failures. Additionally, we consider a multi-tier SDN,
where there is a dedicated SDN controller for each pod at the aggregation layer.
The switches at the aggregation layer are connected with the switches at the
core layers. We consider that the switches at the core layer are managed by a
single controller. Moreover, in this work, we consider that the IoT devices at the
edge layer are mobile, and are connected to the switches at the aggregation layer
through the access points. The system architecture is depicted in Figure 1. The
IoT devices are capable of executing heterogeneous applications having different
datarate.

Each application an of IoT devices n ∈ N , where N is the set of IoT devices at
the edge layer, denotes a separate flow1 and has a datarate ra and connected with
a switch s. These switches at the aggregation layers, where the set of switches is
denoted by S2, are connected with the set of switches at the core layer, which is

1 For the rest of the chapter, we use an to denote flow or application a generated from
IoT device n, synonymously.
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Fig. 1: Schematic Diagram of Software-Defined Fat Tree DCN

denoted by S1. We consider that each switch at the aggregation and core layers
is heterogeneous in terms of bandwidth and TCAM. Furthermore, in addition
to the IoT devices, we also consider the presence of servers at the edge layer.

To achieve a high throughput with an optimal delay, we need to ensure
a balanced data traffic in the network. Considering that each switch s has a
limited capacity of Bs and there are As set of flows associated with switch s,
where ∀s ∈ S1 ∪ S2, the following constraint needs to be satisfied:

Bs ≤
∑

an∈As

ra (1)

On the other hand, each application an has a delay threshold dtha . Hence,
while allocating the flows to the switches, the following constraint also needs to
be satisfied.
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dtha ≤
∑
s∈Pa

dsa (2)

where Pa denotes the set of switches associated with the flow an; and dsa represent
the delay at switch s for handling flow an. We consider that for handling each
flow, the switches follows first-in-first-out (FIFO) scheduling and requires a fixed
duration ∆. Hence, for processing a single packet, we get:

dsa =
∑
s∈Pa

∑
an∈As

∆ (3)

Additionally, due to limited TCAM, the maximum number of flows can be
handled by each switch s is denoted by Ms and must satisfy the following con-
straint:

Ms ≥ |As| (4)

Hence, to serve a high number of flows, the controllers can request to reduce
the associated datarate for each application an, however, each IoT device n needs
to ensure that minimum datarate rmin

a is achieved, i.r., ra ≥ rmin
a .

4 FASCES: QoS-Aware Dynamic Flow Management
Scheme

We propose a single-leader-multiple-followers Stackelberg game for studying the
interaction between the IoT applications and the controllers in software-defined
data center networks. The Stackelberg game is a non-cooperative game that
deals with the interaction among the leaders and followers. In FASCES, the
controller acts as the leader, and the IoT application act as the followers. In
this work, the controllers at the aggregation layer deal with the IoT applications
directly. However, the controller at the core layer needs to interact with the
controllers at the aggregation layer. Hence, the decision of each leader at the
aggregation layer is always influenced by the decision of the controllers at the
core layer. In the proposed game, the leaders aim to maximize their utility values
while maximizing the bandwidth utilization with optimal delay and maximizing
the number of applications served. On the other hand, the followers aim to
maximize their utility while obtaining a high datarate with less delay. Therefore,
the components of FASCES are as follows:

(i) Each controller act as the leader. The utility of each controller at the ag-
gregation layer is influenced by the decision of the controller at the core
layer. The decision of the controllers are executed by the switches, hence
the switches are not considered active players in the proposed game.

(ii) Each IoT application acts as the follower and decides the required datarate.
The maximum datarate can be achieved by each application depends on
the hosted IoT device.

(iii) The IoT applications run for a finite duration which is not known a priori.
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4.1 Single-Leader-Multiple-Followers Stackelberg Game: The
Justification

The proposed system comprising of the fat-tree DCN and the SDN follows a
hierarchical architecture. The different entities such as the controllers and IoT
applications, are non-cooperative and aim to maximize their payoff values. This
results in a ‘oligopolistic market’ scenario [10]. On the other hand, Stackelberg
game is the most suitable game-theoretic approach to model a hierarchical sys-
tem with non-cooperative players. Hence, we propose to use the single-leader-
multiple-followers Stackelberg game for designing the FASCES scheme.

4.2 Game Formulation

To model the game-theoretic interactions in FASCES, we design two utility
functions for the controllers and the IoT applications, which are discussed as
follows.

Utility Function of Each IoT Application

The utility function Ua(·) of each IoT application signifies the satisfaction of the
end-users in data transmission. Each application an needs to finalize an optimal
datarate r∗a to ensure that the associated flow rule is active. Considering that
each switch s ∈ Pa handles As set of applications, the optimal datarate of flow
r∗a depends on r∗−a, where r∗−a = As \{an}. This is because the IoT applications
are non-cooperative. Therefore, the utility function Ua(ra, r−a, As, Pa) of each
IoT application an of IoT device n needs to satisfy the following constraints:

(i) Each IoT device aims to achieve the maximum datarate rmax
a , where ra ≤

rmax
a . Therefore, the utility function Ua(ra, r−a, As, Pa) is a non-decreasing

function. Mathematically,

∂Ua(ra, r−a, As, Pa)

∂ra
≥ 0 (5)

(ii) The payoff value of Ua(ra, r−a, As, Pa) decreases on increasing the datarate
beyond the optimal value. Therefore, in the marginal condition, Ua(ra, r−a, As, Pa)
is considered to be a non-increasing function. Mathematically,

∂2Ua(ra, r−a, As, Pa)

∂(ra)2
< 0 (6)

(iii) With the increase in the number of applications, i.e., |As| managed by
each switch s, the probability of flow rule replacement increases. Hence,
the payoff of the utility function Ua(ra, r−a, As, Pa) decreases with the
increase in |As|. Mathematically,

∂Ua(ra, r−a, As, Pa)

∂|As|
< 0, ∀s ∈ Pa (7)
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Therefore, motivated by the work of Tushar et al. [33], in FASCES, the utility
function Ua(ra, r−a, As, Pa) of IoT application an is represented as follows:

Ua(ra, r−a, As, Pa) = rmax
a ra −

(
rmin
a

rmax
a

)
ra

2 − ra
∑

s∈Pa
|As|

|Pa|
(8)

In FASCES, each IoT application aims to maximize the payoff of Ua(ra, r−a, As, Pa),
while deciding an optimal datarate. Mathematically,

arg max
ra

Ua(ra, r−a, As, Pa) (9)

while satisfying the constraints mentioned in Equations (1) and (2).

Utility Function of Each Controller

The utility function Bc(ra, r−a, As) of each controller c signifies the utilization
of the switch capacity Bs. The controllers aim to maximize the the set of appli-
cations served as well as maximize the bandwidth allocated to each applications
or flows. Therefore, the utility function Bc(ra, r−a, As) of each controller c needs
to satisfy the following constraints:

(i) Each controller tries to allocate high bandwidth possible to ensure high
utilization of its capacity. Mathematically,

∂Bc(ra, r−a, As)

∂ra
≥ 0 (10)

(ii) The overall objective of the controllers is to accommodate high number of
flows, while satisfying the physical limitations of the switches. Mathemat-
ically,

∂Bc(ra, r−a, As, Pa)

∂|As|
> 0 (11)

Therefore, we design the utility function Bc(ra, r−a, As) of each controller c
as follows:

arg max∑
ra,As

Bc(ra, r−a, As) (12)

Each controller c aims to maximize the payoff of Bc(ra, r−a, As) while satis-
fying the constraints in Equations (1) and (4).

4.3 Existence of Equilibrium

In this section, we evaluate the existence of the Stackelberg equilibrium, defined
in Definition 1, for FASCES in Theorem 1.



Fo
r

P
er

so
na

l
U

se
O

nl
y

FASCES: QoS-Aware Dynamic Flow Management Scheme 9

Definition 1 In FASCES, the Stackelberg equilibrium is denoted as a tuple of
〈r∗a, A∗s〉, where r∗a and A∗s represent the optimal datarate for application an and
the optimal set of flows associated with switch s ∈ S1 ∪ S2. The equilibrium
condition also needs to satisfy the following constraints:

Ua(r∗a, r
∗
−a, A

∗
s, P

∗
a ) ≥ Ua(ra, r

∗
−a, A

∗
s, P

∗
a ) (13)

Bc(r
∗
a, r
∗
−a, A

∗
s) ≥ Bc(r

∗
a, r
∗
−a, As) (14)

Fig. 2: Workflow of FASCES

Theorem 1 Given an optimal set of flows A∗s for each switch s ∈ Pa, a Stack-
elberg equilibrium exists for each IoT application an.

Proof. The cumulative payoff obtained by the applications As associated with
switch s is represented as follows:
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U s(·) =
∑

an∈As

Ua(ra, r−a, As, Pa) (15)

By considering the Karush–Kuhn–Tucker (KKT) conditions [22] on U s(·),
we get:

Ls = U s(·) + λ1(Bs −
∑

an∈As

ra) +
∑

an∈As

λa2(dtha −
∑
s∈Pa

dsa) (16)

where λ1 and λa2 are the Lagrangian multipliers. By taking the derivative of Ls,
we obtain the Hessian matrix ∇2Ls is as follows:

∇2Ls =



− rmin
1

rmax
1
· · · 0 · · · 0

...
. . .

...
. . .

...

0 · · · − rmin
a

rmax
a
· · · 0

...
. . .

...
. . .

...

0 · · · 0 · · · − rmin
|As|

rmax
|As|


(17)

We observe that the obtained Hessian matrix is a negative diagonal matrix.
Hence, we conclude that there exists at least one Stackelberg equilibrium in
FASCES.

4.4 Proposed Workflow

To obtain the optimal distribution of flows, FASCES follows the workflow as
shown in Figure 2. Initially, each application informs about their minimum
datarate requirement to the controllers. On receiving the set of applications
to be served, the controllers allocate the flows optimally among the available
switches at aggregation and core layers. Thereafter, the controllers inform the
path associated with each flow to the IoT devices, and these devices try to find
an optimal value of the datarate can be achieved while interacting with the
controllers.

5 Performance Evaluation

In this section, the performance of FASCES is analyzed through simulation with
varying the number of heterogeneous IoT applications. We simulated using the
MATLAB simulation platform considering a terrain of 10 × 10 m2 [18]. The
deployment of switches follows a grid patern. On the other hand, IoT devices are
deployed randomly and follow random waypoint mobility model [18]. We consider
that there are 2 pods at the aggregation layer, where each pod is comprised of 4
switches and 2 switches at the core layer. We considered that the IoT applications
generate data in chunk having size 800 Mb, as shown in Table 1. We consider
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Fig. 3: Per-Flow Throughput

Table 1: Simulation Parameters
Parameter Value
Number of Applications 1000-5000
Maximum Datarate of IoT applications 128-5000 Kbps
Velocity of IoT Devices 6-10 m/s
Maximum capacity of Each Switches 5-10 Gbps
Chunk of data generated by each IoT
Applications

500-2000

Table 2: Maximum Datarate Distribution [18]
Maximum Datarate (Kbps) IoT Applications (%)

5000 15
1000 25
1000 25
384 40
128 20

the datarate requirement distribution of IoT applications, as presented in Table
2.

The performance of FASCES is evaluated while comparing two of the existing
schemes – data flow management in SDN (FlowMan) [20] and data broadcasting
in fat-tree DCN (D2B) [18]. In FlowMan, the authors proposed a Nash bar-
gaining game-based data traffic management scheme for SDN. However, while
allocating resources, the authors only considered the flows within one-hop neigh-
bors. In other words, FlowMan is capable of ensuring a local optimum which is
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Fig. 4: Per-Flow Delay
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Fig. 5: Network Delay

not sufficient for a network with heterogeneous switches. On the other hand, in
D2B, the authors proposed a Stackelberg game-based data broadcasting scheme
for DCN. However, in D2B, only a single IoT source is considered. Additionally,
the switches are homogeneous and traditional without having any limitation on
the set of applications that can be handled by each switch. Using FASCES, we
address these lacunae in the existing literature while ensuring balanced data
traffic in the network.

We evaluate the performance of FASCES based on the following parameters –
(1) per-flow throughput, (2) per-flow delay, (3) network throughput, (4) network
delay, and (5) set of serviced IoT applications.
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Fig. 6: Network Throughput
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Fig. 7: Serviced IoT Applications

Figure 3 depicts that with the increase in the number of applications, the per-
flow throughput increases 15.37-26.91% using FASCES than using FlowMan and
D2B. However, with the increase in the velocity of IoT devices, the throughput
decreases as the applications need to be associated with new switches very often
and a few packets get dropped due to the delay constraint. On the other hand,
the delay for each flow also reduces by 27.78-36.67% using FASCES than that
of using FlowMan and D2B, as depicted in Figure 4. Additionally, we observe
that with the increase in the number of applications, the increase in delay is not
significant using FASCES.

Similarly, we observe that the network delay decreases by 16.67-19.45% and
the network throughput increases by 16.67-19.45% using FASCES than using
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FlowMan and D2B, as depicted in Figures 5 and 6, respectively. This is because
the flows are distributed efficiently among the switches at the aggregation and
core layers while ensuring efficient utilization of link capacity and TCAM space.

Furthermore, from Figure 7, we observe that FASCES is capable of serving
all the applications with efficient data traffic distribution. However, with the
increase in the number of applications, FASCES cannot serve 100% application
due to physical limitations of the system. Using FASCES, we yield a 4.56-16.67%
increase in serviced application than using FlowMan and D2B.

6 Conclusion

In this work, we proposed a data traffic management scheme, named FASCES,
and modeled the interaction between the controllers and the SDN switches us-
ing a single-leader-multiple-followers Stackelberg game. FASCES is capable of
ensuring balanced data traffic in the presence of heterogeneous IoT flows and
SDN switches. We observed that FASCES reduces the per-flow delay as well as
network delay at least by 27.78% and 16.67%, respectively while ensuring an
increase in both per-flow throughput and network throughput. Through simula-
tion, we yield that FASCES ensures efficient flow distribution in software-defined
DCN.

In future, this work can be extended while designing data traffic management
for the recursive architectures of DCN such as B-Cube and DCell. Additionally,
we can also explore this work while considering a multi-tier controller structure
for each layer in fat-tree DCN. Moreover, this work also can be extended while
considering the link and switch failure in software-defined DCN.
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