
Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

A R T I C L E T Y P E

T-RESIN: Throughput-Aware Dynamic Resource Orchestration
for IoE-Enabled Software-Defined Edge Networks

Lalita Agrawal1 Ayan Mondal, Senior Member, IEEE1 Mohammad S. Obaidat, Life Fellow,
IEEE2

1Department of Computer Science and Engineering,
Indian Institute of Technology Indore, Madhya
Pradesh, India

2Distinguished Professor, The King Abdullah II
School of Information Technology, The University
of Jordan, Amman 11942, Jordan and School of
Computer and Communication Engineering,
University of Science and Technology Beijing,
Beijing 100083, China, Department of
Computational Intelligence, School of Computing,
SRM University, SRM Nagar, Kattankulathur
603203, TN, India, and School of Engineering,
The Amity University, Noida, UP 201301, India.
Email: m.s.obaidat@ieee.org

Correspondence
Corresponding author: Ayan Mondal.

Email: ayanm@iiti.ac.in

Abstract
In this work, we address the problem of resource allocation in Internet of everything (IoE)-enabled software-
defined edge networks. In the existing literature, the researchers considered optimizing the performance
of the software-defined networking (SDN) platform using a single-tier architecture, where the Internet of
Things (IoT) devices are in the same tier. However, with the advent of edge computing, we can explore the
two-tier architecture of edge networks - local tier and edge tier - in the presence of SDN, which has not been
explored. Hence, we propose an evolutionary game-based resource allocation scheme for software-defined
edge networks. Additionally, we aim to optimize the QoS of the edge-based IoE services while optimizing
the throughput of the system. The IoT devices use the proposed scheme in the local tier to identify the
optimized mapping to the SDN switches. On the other hand, in the edge tier, the proposed scheme aims to
optimize the throughput while allocating the IoE service to the optimal subset of edge devices. We evaluated
the performance of the proposed scheme using the Python3-based Mininet platform in the presence of Ryu
Controller and Open vSwitches. Ryu is an element-based software defined networking framework, which
offers software elements with well described API that enables developers to produce new network control
functions. We observed that by using T-RESIN, the network throughput increases by 27.98-31.84% than
using the existing schemes.
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1 INTRODUCTION

With the advent of Internet of Things (IoT), the number of devices increased significantly. The International Data Corporation
(IDC) estimates that the number of IoT devices will increase to 55.7 billion and these IoT devices will generate almost 80
zettabytes of data every year by 20251. Moreover, Internet of Everything (IoE) considers not only the collection of raw data and
interconnecting things, but also the decision-making process and people2. Hence, IoE is a superset of the Internet of Things (IoT)
by providing multiple forms of communication to IoT. In IoE, the process analyses the real-time data and decides the activity to
make IoE an automated intelligence system. We envision that the processing of these huge amount of data by the cloud, i.e., the
centralized architecture, will incur high latency and low bandwidth utilization in provisioning IoE-based services3,4. Hence,
we plan to use the distributed edge network for processing the IoT-based applications5,6,7. We observe that the edge devices
are vendor specific and cannot be integrated seamlessly. Therefore, we introduce software-defined networking-enabled edge
architecture, named as Software-Defined Edge Networks (SDENs). Similar to the traditional SDN architecture, SDEN also
separates the traditional edge networks in two plane — control and data edge planes8,9,10,11.

In the existing literature, researchers focused on the task offloading in the edge networks and resource allocation in SDN.
However, the task offloading in the SDEN remains a challenging task due to several factors such as limited bandwidth and
flow space of the SDN edge switches and processing capacity of the edge devices. Additionally, we wish to highlight that the

Abbreviations: SDEN, Software-Defined Edge Networks; IoE, Internet of Everything; SDN, Software-Defined Networks.
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data generated by IoT devices are heterogeneous in terms of the volume and variety. Therefore, we argue that there is a need
for resource allocation scheme for SDENs in the presence of heterogeneous IoT devices and services, while maximizing the
bandwidth utilization of the edge networks.

Motivation Scenario: Edge computing platform follows a distributed architecture and provides resource utilization and
computation on edge nodes. Edge computing has many advantages such as less computational latency, networking load, and
low response time. We aim to allocate optimal resources to the processes of the IoT devices based on their requirements while
ensuring a high network bandwidth utilization.

In this work, we propose a throughput-aware dynamic resource allocation scheme, named T-RESIN, for SDENs. We consider
a three-tier architecture, as shown in Figure 1. To model the interactions between the IoT devices and the Open vSwitches, and
Open vSwitches and the edge computing nodes, i.e., through access and edge tiers, respectively, we use evolutionary game
theoretic approach separately. Initially, the IoT devices interact with the Ryu SDN controller to decide the association among the
IoT devices and the Open vSwitches. Thereafter, the Ryu SDN controller decides the association among the Open vSwitches
and the edge computing nodes. We consider that the T-RESIN algorithms are to be executed by the Ryu SDN controller and
ensure maximizing the overall throughput of the network. In summary, the specific contributions of this paper are as follow:

1. We propose T-RESIN, a throughput-aware dynamic resource allocation scheme, for IoE-enabled SDENs.
2. The interactions among the entities — IoT devices, Ryu SDN controller/Open vSwitches, and the edge computing nodes

— are modelled using evolutionary game-theoretic approach.
3. We evaluated the performance of the proposed scheme, T-RESIN, theoretically and evaluated the performance of T-RESIN

while comparing with the existing schemes.

F I G U R E 1 Schematic Diagram of Software-Defined Edge Networks

2 RELATED WORKS

In this literature survey, we focus on two broad areas. Firstly, we study the internet of everything, how it differs from IoT, and
the components and enabling techniques for IoE. Secondly, we survey existing work related to resource allocation techniques
for IoT and IoE; and bandwidth distribution among SDN switches. So, we can analyze the network’s overall performance and
quality of service (QoS) using different approaches.
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Enabling IoE: Langleya et al.12 studied the business model for IoE at three-level that are micro, meso, and macro. The
authors described the potential impact of IoE on current business models and the value creation processes by firms and their
customers. Liu et al.13 presented the Unmanned aerial vehicle (UAV) enabled IoE to enhance the critical aspect of IoE that are
scalability, intelligence, and diversity. Liyanage et al.14 presented Multi-Access Edge Computing (MEC) enabled 5G wireless
system and explained the integration of SDN, Network Function Virtualization (NFV) in MEC enabled IoT network. Singh and
Gill15 surveyed the importance of edge computing techniques for supporting AI-enabled IoE platform. Iannacci et al.16 focused
on the hardware perspective of IoT, IoE, 5G, and tactile internet features and worked on Micro Electro Mechanical Systems for
the application of energy harvesting (EH-MEMS) and Radio Frequency (RF-MEMS).

Resource Allocation for IoT and IoE: Misra et al.17 proposed pricing based resource allocation model, FogPrime, and
clustered the fog nodes. Authors used dynamic coalition-formation game approach for resource allocation locally within a cluster.
Gurung and Mondal18 proposed a multi-hop data transmission scheme for SDEN. Misra et al.19 studied the data broadcasting
approach for SDN while incorporating the SDN-enabled edge and core networks. In another work, Yuan et al.20 proposed the
network management scheme for software-defined networking in terrestrial and non-terrestrial networks. Mondal and Misra21

proposed the FlowMan scheme for heterogeneous data flow management. Authors used the Nash bargaining game approach to
achieve a sub-optimal problem further bounded in 0,1 knapsack problem and ensured a good quality of service. Jain et al.22

proposed meta-heuristic with blockchain based resource allocation technique (MWBA-RAT) for IoE infrastructure. Authors used
6G enabled blockchain technique for management, and observation of shared resources. Cybertwin has been used for virtual
representation of IoE end nodes (cyberspace) so its architecture has cyber-twin along with edge nodes. Their proposed method
reduced the power consumption and communication cost for optimal resource allocation. For the same purpose, Manogaran
et al.23 analysed resource utilization numerically for optimal solution and used two algorithms that are profitable resource
allocation and optimal neighbour replacement. In another work, Deb et al.24 proposed a distributed load management scheme
using edge platforms for IoT-enabled smart grid environment. Sami et al.25 presented IScaler for dynamic resource allocation in
the context of mobile edge computing with the vision of 6G and IoE services. The authors have used the Deep Reinforcement
Learning approach to overcome the challenges of the proposed method.

Synthesis: In the existing literature, most researchers focused on various resource allocation methods in contrast to IoT
networks. Few researchers have proposed IoE based resource allocation technique. We present a comparative analysis of the
existing resource allocation approach based on software-defined IoE network features in Table 1. No work has been done
for dynamic resource allocation for the IoE network using the evolutionary game theoretic approach. Here, we present an
evolutionary game-based dynamic resource allocation technique for IoE-enabled SD-edge networks. Additionally, we optimize
bandwidth utilization for SDN switches.

T A B L E 1 Comparison of Existing Resource Allocation Methods

Existing Work for Resource Allocation IoE-Enabled SDEN Features
Heterogeneous Dynamic Configuration Fog Cloud IoE Network

Misra et al. 17 ✓ ✓ ✓ ✗ ✗

Mondal et al. 21 ✓ ✓ ✗ ✓ ✗

Jain et al. 22 ✗ ✓ ✓ ✗ ✓

Manogaran et al. 23 ✗ ✗ ✓ ✓ ✓

Sami et al. 25 ✗ ✓ ✓ ✗ ✓

3 SYSTEM MODEL

We consider an SDEN architecture with a single controller, multiple SDN switches, and multiple IoE devices computing edge
nodes, as shown in Figure 1. The IoT devices generates the data from the IoE process and applications that are to be processed
by the edge nodes‡. However, the devices are connected through the SDN switches at the access tier. N and S represent the
sets of IoE devices and SDN switches, respectively. Bandwidth associated with each SDN switch s ∈ S is represented as Bs.
Therefore, the total bandwidth B distributed among all the switches is as follows:

‡ We clarify the use IoT for the devices and IoE for the associated services/processes.
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B =
∑
s∈S

Bs (1)

Each IoE device n ∈ N generates fn number of data flows and the data generation rate of each data flow i is denoted as di,
where i ∈ (Z+ ∩ [0, fn],∀n). Flows are heterogeneous in terms of bandwidth depending on flow type — scalar or multimedia,
and the volume generated by flow. We consider that the SDN switches are capable to forward the generated data and support the
network requirement of the IoE applications. However, the flows might need to distributed among the multiple SDN switches as
these switches have physical limitations in terms of flow rule capacity and bandwidth. Accordingly, each switch needs to satisfy
the following constraints.

Vs =
∑
n∈N

∑
i∈Z+∩[0,fn]

xi,n,sdi ≤ Bs (2)

Fs =
∑
n∈N

∑
i∈Z+∩[0,fn]

xi,n,s ≤ Rmax
s (3)

where Vs and Fs denote the volume of data and the number of flow-rules to be handled by switch s. We consider that each switch
s ∈ S is capable of installing maximum Rmax

s number of flow rules in its ternary content-addressable memory (TCAM) memory.
Here, xi,n,s is a binary variable and defines the association among flow i, where i ∈ (Z+ ∩ [0, fn]), and switch s and defined as
follows:

xi,n,s =
{

1, if flow i of n ∈ N is associated switch s
0, otherwise

(4)

In other words, we consider that the set of Ps process is associated with switch s ∈ S, where each process q ∈ Ps requires fq
number of flows. Hence, we get: ∑

q∈Ps

fq ≡
∑
n∈N

∑
i∈Z+∩[0,fn]

xi,n,s (5)

In the edge tier, we consider that there is E set of edge nodes. Each edge node e ∈ E has computational and memory capacities
of Ce and Me, respectively. Hence, while allocating the processes to the edge nodes, we need to satisfy the following constraints.∑

s∈S

∑
q∈Ps

∑
j∈Z+∩[0,fq]

yj,q,emq ≤ Me (6)

Ce
use =

∑
s∈S

∑
q∈Ps

∑
j∈Z+∩[0,fq]

yj,q,ecp ≤ Ce (7)

where mq and cq represent the required memory and CPU resources for each process q ∈ Ps, respectively. We denote the memory
and computational capacities of edge node e ∈ E using Me and Ce, respectively. Here, yj,q,e is a binary variable and is evaluated
as follows:

yj,q,e =
{

1, if process q ∈ Ps of switch s ∈ S is allocated to edge node e
0, otherwise

(8)

We consider that the overall delay for each process q is denoted as λq and evaluated as follows:

λq = λq,s + λq,e (9)

where λq,s and λq,e represent the incurred delay at the access and edge tiers, respectively. We consider that each IoE process is to
be served within a threshold delay λth

q . Hence, we need to satisfy the following constraint:

λq ≤ λth
q (10)

We also consider that the edge devices have limited energy, i.e., maximum energy Emax
e for each edge device e. Considering

that process q requires Eq amount of energy, the edge node e needs to ensure that it satisfies the following constraint for serving
process q.
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∑
s∈S

∑
q′∈Ps∪{q}

∑
j∈Z+∩[0,fq′ ]

yj,q′,eEq′ ≤ Emax
e (11)

Therefore, considering the incoming process q is allocated to edge node e, the remaining amount of energy, Eres
e , is represented

as follows:

Eres
e = Emax

e –
∑
s∈S

∑
q′∈Ps∪{q}

∑
j∈Z+∩[0,fq′ ]

yj,q′,eEq′ (12)

Table 2 summarizes the main symbols and their corresponding description which are frequently used in the paper.

T A B L E 2 List of Symbols

Symbol Description

N Set of IoE devices/things
S Set of SDN switches
E Set of Edge nodes
fn Set of data flow generated by each IoE device n ∈ N
Bs Bandwidth associated with each switch s ∈ S
Fs Number of lows associated with switch s
Pn(t) Set of process required by IoE end-device n ∈ N
di Data generation rate of each flow i ∈ (Z+ ∩ [0, f n])
Ce Computational capacity of edge node e ∈ E
Me Memory capacity of edge node e ∈ E
Ps Set of process associated with switch s ∈ S
Rmax

s Maximum no. of flow rules in TCAM of switch s ∈ S
λp Total delay for each process p ∈ Pn(t)
λn Total processing delay for each n ∈ N IoE end-device
Pe Set of process associated with edge node e ∈ E
Ee Total energy associated to an edge node e ∈ E
ys(ω) Population share of each switch s ∈ S
Us(ω) Utility function for each switch s ∈ S
ẏs(ω) Replicator dynamics for SDN Switches
xe(ϕ) Population share of each edge node e ∈ E
We(ϕ) Utility function for each edge node e ∈ E
ẋe(ϕ) Replicator dynamics for edge nodes
α,β Evolutionary control factor
ω Evolutionary iteration for SDN switches
ϕ Evolutionary iteration for edge nodes

4 T-RESIN: THE PROPOSED RESOURCE ORCHESTRATION SCHEME

For modelling the interactions to ensure dynamic resource allocation in SDEN, i.e., a three-layer architecture, we use the
evolutionary game theoretic approach26. In the subsequent sections, we discuss the use of the evolutionary game-theoretic
approach for the proposed scheme, T-RESIN.

4.1 Justification for Using Evolutionary Game

For optimal resource allocation of IoE processes in SDEN, we rely on Equations (2), (3), (6) and (7). These equations are a
function of binary variables xi,n,s and yj,q,e defined in Equations (4) and (8), respectively. Hence, we argue that the problem
mentioned above is a multiple binary integer programming problem27 that is mapped to 0-1 knapsack problem27,28. It is an NP-
complete problem. Hence, to get a sub-optimal resource allocation in polynomial time, we use an evolutionary game-theoretic
approach.
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4.2 Game Formulation

We design the proposed scheme, T-RESIN, as a two-stage game — access and edge tiers. In the access tier, the IoT devices or
the IoE processes act as the players and choose the set of forwarding SDN switches, i.e., strategies to forwarding generated data
from the processes at the user end to the computing edge nodes, with the help of the SDN controller. The generated data by the
IoE processes is considered as the population share at access tier in T-RESIN. Hence, the population share ys(ω) of each switch
s ∈ S, where ω is the evolutionary iteration, is defined as follows:

ys(ω) =
Vs(ω)∑

s∈S
Vs(ω)

(13)

On the other hand, the population share xe(ϕ) of each edge node e ∈ E is defined as follows:

xe(ϕ) =
Ce

use(ϕ)∑
e∈E

Ce
use

(14)

where ϕ is the evolutionary iteration for edge nodes. Here, xe(ϕ) signifies the computation power contribution of edge node e.
Ce

use represents the used computation power of edge node e. We identify the selection of edge nodes for processing the data
generated by the IoE devices and forwarded through the SDN switches. Based on the population shares, we define the utility
functions of each SDN switch and edge node as given in the subsequent sections.

Utility Function of Each SDN Switch: Utility function Us(ω) signifies the fitness function for switch s for evolutionary
iteration ω. We consider that Us(ω) varies linearly with the population share of switch s. Similarly, with the increase in the
processes Ps associated with the switch s, the utility value increases with the increase in the number of flow rules installed in the
switch. We define utility function Us(ω) for each switch as follows:

Us(ω) =
ys(ω)Fs(ω)

Rmax
s

(15)

where Fs(ω) signifies the number of flows associated with switch s at evolutionary iteration ω.
Therefore, the average payoff U(ω) of the SDN switches is evaluated as follows:

U(ω) =
∑
s∈S

ys(ω)Us(ω) (16)

Utility Function of Each Edge Node: Utility function We(ϕ) signifies the fitness function for edge node e. We consider that
We(ϕ) varies linearly with the population share and total energy consumed of edge node e. Additoinally, we consider that We(ϕ)
decreases with the increase of residual energy Ee

res of each edge node e ∈ E . The utility function We(ϕ) for each edge node is
designed as follows:

We(ϕ) = xe(ϕ)
(

1 –
Ee

res(ϕ)
Ee

)
(17)

We define the average payoff W(ϕ) of the edge nodes E as follows.

W(ϕ) =
∑
e∈E

xe(ϕ)We(ϕ) (18)

Replicator Dynamics: As evolutionary games are dynamic and have two mechanisms that are mutation and selection. The
mutation mechanism modifies the characteristics of the population whenever new players come into the population and choose
different strategies. The selection mechanism determines the strategy with high fitness and promotes that strategy in the
population. In an evolutionary game, players replicate themselves by changing the strategies, called as replicator dynamics.
Based on the significance of replicator dynamics in T-RESIN, we define replicator dynamics for SDN switches ẏs(ω) and edge
nodes ẋe(ϕ) as follows:

ẏs(ω) = αys(ω)
(
Us(ω) – U(ω)

)
(19)

ẋe(ϕ) = βxe(ϕ)
(
We(ϕ) – W(ϕ)

)
(20)
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Algorithm 1 Algorithm for SDN switches
INPUTS:
1: N ,S, fn, Fs, di, Rmax

s ,α
OUTPUT:
1: y∗, U∗

PROCEDURE:
1: ω ← 0
2: Randomly assign each flow 0 ≤ i ≤ fn,∀n, to switch s ∈ S
3: do
4: ω ← ω + 1
5: for Each s ∈ S do
6: Calculate Vs(ω) using Equation (2)
7: Calculate Fs(ω) using Equation (3)
8: Calculate population share ys(ω) using Equation (13)
9: Calculate utility value Us(ω) using Equation (15)
10: end for
11: Calculate average utility value U(ω) using Equation (16)
12: for Each s ∈ S do
13: Calculate replicator dynamic ẏs(ω) using Equation (19)
14: ys(ω + 1)← ys(ω) + ẏs(ω)
15: end for
16: while ẏs(ω) ̸≈ 0
17: y∗s ← ys(ω)
18: Calculate utility value U∗

s using Equation (15) at evolutionary iteration ω

19: return y∗, U∗

where {α,β} > 0 and act as the evolutionary control factors.
Evolutionary Equilibrium: Through evolution, the population adapts higher utility value strategies, eventually leading to an

evolutionary stable strategy or evolutionary equilibrium. The fractions of the population choosing different strategies cease to
change at evolutionary equilibrium26. In T-RESIN, evolutionary equilibrium is determined at ẏs(ω) for SDN switches and ẋe(ϕ)
for edge nodes.

4.3 Theoretical analysis

In T-RESIN, the SDN controller executes Algorithms 1 and 2, on behalf of the SDN switches and the edge nodes, respectively,
to achieve the evolutionary equilibrium among the IoE devices, SDN switches, and edge computing nodes. We analyze the
existence of evolutionary equilibrium in T-RESIN in this section.

Evolutionary equilibrium for SDN switches: At evolutionary equilibrium, we get.

ẏs(ω) = αys(ω)
(
Us(ω) – U(ω)

)
= 0 (21)

Considering that the population share of each switch s ∈ S is ys(ω) ≥ 0 and evolutionary control factor α is a positive constant
i.e. α > 0. we get:

Us(ω) – U(ω) = 0 (22)

By solving Equation (22), we get:

(
y∗s )2 – y∗s +

∑
s′∈S/{s}

(
y∗s′

)2
(

Fs′
Rmax

s′

)
Fs

Rmax
s

= 0 (23)

At evolutionary equilibrium, we yield optimal population share y∗s for each switch s ∈ S as follows:
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Algorithm 2 Algorithm for edge nodes
INPUTS:
1: S, E , Ce

use, Ee, Pe, W,β
OUTPUT:
1: x∗, W∗

PROCEDURE:
1: ϕ← 0
2: Randomly map processes Ps,∀s, to edge node e ∈ E for computational resources
3: do
4: ϕ← ϕ + 1
5: for Each e ∈ E do
6: Calculate Ce

use(ϕ) using Equation (7)
7: Calculate Ee

res(ϕ) using Equation (12)
8: Calculate population share xe(ϕ) using Equation (14)
9: Calculate utility value We(ϕ) using Equation (17)
10: end for
11: Calculate average utility value W(ϕ) using Equation (18)
12: for Each e ∈ E do
13: Calculate replicator dynamic ẋe(ϕ) using Equation (20)
14: xe(ϕ + 1)← xe(ϕ) + ẋe(ϕ)
15: end for
16: while (ẋe(ϕ) ̸≈ 0)
17: x∗e ← xe(ϕ)
18: Calculate utility value W∗

e using Equation (17) at evolutionary iteration ϕ

19: return x∗, W∗

y∗s =
1±
√

1 – 4ψ
2

(24)

where ψ =

 ∑
s′∈S/{s}

(y∗s′ )
2
(

Fs′
Rmax

s′

)
Fs

Rmax
s

.

Evolutionary equilibrium for edge nodes: At evolutionary equilibrium, the change in the population share of the edge nodes
reaches zero. Hence, we get.

ẋe(ϕ) = βxe(ϕ)
(
We(ϕ) – W(ϕ)

)
= 0 (25)

Considering that xe > 0,∀e, and β > 0, we get.

We(ϕ) – W(ϕ) = 0 (26)

At evolutionary equilibrium, we get that the optimal population share x∗e for each edge node e is as follows:

(x∗e )2 – x∗e +

∑
e′∈E /{e}

(x∗e′ )
2(

1 – Ee′
res

Ee′

) (
1 –

Ee
res

Ee

)
= 0 (27)

At evolutionary equilibrium, we yield optimal population share x∗e for each edge node e ∈ E as follows:

x∗e =
1±
√

1 – 4κ
2

(28)

where κ =

 ∑
e′∈E/{e}

(x∗e′ )
2

(
1–

Ee′
res

Ee′

)
(

1–
Ee

res
Ee

)
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5 PERFORMANCE ANALYSIS

We emulated the proposed scheme, T-RESIN, using the Mininet network emulator §. The performance of T-RESIN is evaluated
while comparing with the existing competing schemes. The detailed experimental setup with emulation parameters and the yield
results are discussed in the subsequent sections.
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5.1 Experimental Setup

To evaluate the performance of T-RESIN, we emulated a SDN-enabled edge platform in Mininet. We consider that SDEN is
equipped with a Ryu SDN controller¶ and Open vSwitch (SDN switches)#. The detailed experimental setup is mentioned in
Table 3.

We consider that there is a single Ryu SDN controller for SDEN Mininet topology in T-RESIN in the presence of multiple
SDN switches and edge nodes. The detailed emulation parameters are shown in Table 4.

T A B L E 3 Experimental Setup

Hardware Intel® Core™ i7-9700 CPU @3.00GHz × 8
Operating System Ubuntu 20.04.6 LTS
Network Emulator Mininet (Version 2.31b1)
SDN Controller Ryu Controller (Version ryu 4.34)
SDN Switch Open vSwitch (Version ovs-vsctl 2.13.8)
Programming Language Python3 (Version 3.8.10)

§ https://mininet.org/
¶ https://ryu-sdn.org/
# https://www.openvswitch.org/
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T A B L E 4 Emulation Parameters
Parameter Value
Number of Open vSwitches in Mininet topology 2, 5, 10
Number of Edge Nodes in Mininet topology 10, 20, 30
Number of IoE Devices in Mininet topology 50, 100, 200
Energy Consumption at Transmitter side (Tx) 50 nJ/bit 29

Maximum Energy of each Edge node 20 Joule 29

Evolutionary Control Factor α = 0.01,β = 0.1

5.2 Benchmarks

We compare the performance of T-RESIN with two schemes – RandomFlow and FlowMan21. In RandomFlow, we consider that
the resource allocation for the switches and the edge nodes is random. To ensure unbiased result, we took 50 runs of the emulated
platform for each topology and evaluated the 95% confidence interval result. On the other hand, in FlowMan, Mondal and
Misra considered the presence of heterogeneous flows and flow-rules are placed to ensure high throughput. We argue that these
schemes consider resource allocation in SDN-enabled platforms. However, the optimal edge resource allocation in provisioning
IoE-enabled services are not considered in the existing literature.
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F I G U R E 5 Energy Consumption of the Edge Nodes
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F I G U R E 6 Computation Overhead of the Edge Nodes
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F I G U R E 7 Computation Delay at the Edge Nodes

5.3 Performance Metrics

To evaluate the performance of the proposed scheme, T-RESIN, we considered the following performance metrics.

• Network Throughput: It signifies the amount of data delivered and processed by the SDEN. We aim to achieve high network
throughput.

• Flow Count at Switch: It is calculated as the total number of flow rules associated with TCAM memory for each switch.
• Switch Delay: It is calculated as the latency incurred by the flows at the SDN switches in Mininet.
• Average Energy Consumption at Edge Node: It signifies the amount of energy consumed to provision the IoE-enabled

services/processes.
• Average Computation Overhead at Edge Node: We aim to achieve moderate utilization of the edge nodes and ensure low

failure probability while provisioning the IoE-based services.
• Computation Delay at Edge Node: It is calculated as the processing delay the edge devices in provisioning the IoE-enabled

services.

5.4 Results and Discussions

From Figures 2, we observe that the average throughput per IoE devices increases by 27.98-31.84% using T-RESIN than
using other schemes — RandomFlow and FlowMan. This is due to the fact that T-RESIN ensures that the flows are optimally
distributed among the available SDN switches. Additionally, in FlowMan, the flow association is decided based on the one hop
networks and in RandomFlow, the flows are allocated randomly. Moreover, we observe that with the increase in the number of
SDN switches the network throughput outperforms the other existing competing schemes while ensuring a high throughput.
Moreover, using T-RESIN, average flow count per Open vSwitch increases by 10.73-13.03% than using other competing schemes
— RandomFlow and FlowMan, as observed in Figure 3. This eventually helps in distributing the network load optimally at the
SDEN and ensures in achieving high throughput. However, in Figure 4, we observe that delay in the provisioned IoE-enabled
services are mostly random using T-RESIN, as we did not consider delay parameters while modeling the game theoretic model.
Though we argue that T-RESIN ensures the delay threshold values while provisioning services in IoE-enabled SDEN.

On the other hand, Figure 5 depicts that using T-RESIN, energy consumption at edge tier decreases by 4.59-14.57% using
other scheme — RandomFlow. This is due to the fact that the requested processes/applications are allocated optimally among
the available edge nodes. Hence, we also observe that computation overhead of the edge nodes reduces by 9.5-22.29% using
T-RESIN than using RandomFlow, as shown in Figure 6. However, we observe from Figure 7 that the delay incurred at the edge
nodes varies randomly using T-RESIN, as we did not consider the delay parameters while designing the mathematical model of
T-RESIN, as mentioned earlier.

Hence, we argue that T-RESIN ensures a high throughput while reducing the energy consumption and computation overhead
than using the competing existing schemes. We plan to extend this work and optimize the delay performance for IoE-enabled
SDEN.
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6 CONCLUSION

In this paper, we studied the problem of optimal resource allocation in an IoE-enabled SDEN. We designed a multi-tier dynamic
resource allocation scheme, named T-RESIN, using evolutionary game theory. In the bottom tier, the volume of data generated
by the IoE devices defined the population. Population share of each SDN switch is evaluated as the volume of data associated
with the corresponding switch. On the other tier, the population share of each edge node is evaluated as amount of data processed
by it. While following the replicator dynamics principle, we theoretically analyze the existence of evolutionary equilibrium
in T-RESIN. We also evaluated the performance of T-RESIN while emulating on Ryu controller-based Mininet platform and
observed that T-RESIN outperforms the competing existing schemes in terms of achieved network throughput.

This work can be extended while optimizing the energy consumption of the SDEN network and design schemes to ensure less
carbon footprint and sustainable. This work also can be included while considering hierarchical controller architecture in the
presence of SDEN and cloud. We also plan to extend this work while optmizing the overall delay at IoE-enabled SDEN.
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